APPLICATION OF CALCULUS

May - June 2021

QUESTION 10

The graph of $f(x) = ax^3 + bx^2 + cx + d$ has two turning points.

The following information about f is also given:

- f(2) = 0
- The x-axis is a tangent to the graph of f at x = -1
- f'(1) = 0
- $f'\left(\frac{1}{2}\right) > 0$

Without calculating the equation of f, use this information to draw a sketch graph of f, only indicating the x-coordinates of the x-intercepts and turning points. (4)

Given: $f(x) = 3x^3$

9.1 Solve
$$f(x) = f^{-1}(x)$$
 (3)

- 9.2 The graphs f, f' and f'' all pass through the point (0; 0).
 - 9.2.1 For which of the graphs will (0; 0) be a stationary point? (1)
 - 9.2.2 Explain the difference, if any, in the stationary points referred to in QUESTION 9.2.1.
 (2)
- 9.3 Determine the vertical distance between the graphs of f' and f'' at x = 1. (3)
- 9.4 For which value(s) of x is f(x) f'(x) < 0? (4)

- 9.2 If g is a cubic function with:
 - $g(3) = g^{1}(3) = 0$
 - g(0) = 27
 - g''(x) > 0 when x < 3 and g''(x) < 0 when x > 3, draw a sketch graph of g indicating ALL relevant points.

(3)

QUESTION 8

The graph of $y = f'(x) = mx^2 + nx + k$ is drawn below.

The graph passes the points $P\left(-\frac{1}{3};0\right)$, Q(1;0) and R(0;1).

8.1 Determine the values of m, n and k.

(6)

- 8.2 If it is further given that $f(x) = -x^3 + x^2 + x + 2$:
 - 8.2.1 Determine the coordinates of the turning points of f. (3)
 - 8.2.2 Draw the graph of f. Indicate on your graph the coordinates of the turning points and the intercepts with the axes. (5)
- 8.3 Points E and W are two variable points on f' and are on the same horizontal line.
 - h is a tangent to f' at E.
 - g is a tangent to f' at W.
 - h and g intersect at D(a; b).
 - 8.3.1 Write down the value of a. (1)
 - 8.3.2 Determine the value(s) of b for which h and g will no longer be tangents to f'. (2)

9.3 The graph of the derivative f' of a function f is shown.

- 9.3.1 Determine the x values at the turning points of the graph f. (2)
- 9.3.2 On what intervals is f decreasing? (4)